Part Number Hot Search : 
SU802833 2SC5060 LRD260S KBP2005 KBP2005G 22205 LCE13 RU30P5H
Product Description
Full Text Search
 

To Download HYI18T256160B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 July 2007
HY[B/I]18T256400B[C/F](L) HY[B/I]18T256800B[C/F](L) HY[B/I]18T256160B[C/F](L)
www..com
256-Mbit Double-Data-Rate-Two SDRAM DDR2 SDRAM RoHS Compliant Products
Internet Data Sheet
Rev. 1.11
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
HY[B/I]18T256400B[C/F](L), HY[B/I]18T256800B[C/F](L), HY[B/I]18T256160B[C/F](L) Revision History: 2007-07, Rev. 1.11 Page All All www..com Subjects (major changes since last revision) Adapted Internet edition. Editorial change Added product types with industrial temperature Previous Revision: 2006-12, Rev. 1.00
Previous Revision: 2007-05, Rev. 1.10
We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: techdoc@qimonda.com
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 11172006-LBIU-F1TN
2
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
1
www..com
Overview
This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its main characteristics.
1.1
Features
The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features: * Off-Chip-Driver impedance adjustment (OCD) and * 1.8 V 0.1 V Power Supply 1.8 V 0.1 V (SSTL_18) compatible I/O On-Die-Termination (ODT) for better signal quality * DRAM organizations with 4, 8 and 16 data in/outputs * Auto-Precharge operation for read and write bursts * Double Data Rate architecture: two data transfers per * Auto-Refresh, Self-Refresh and power saving Powerclock cycle four internal banks for concurrent operation Down modes * Programmable CAS Latency: 3, 4, 5 and 6 * Average Refresh Period 7.8 s at a TCASE lower than * Programmable Burst Length: 4 and 8 85 C, 3.9 s between 85 C and 95 C * Differential clock inputs (CK and CK) * Programmable self refresh rate via EMRS2 setting * Programmable partial array refresh via EMRS2 settings * Bi-directional, differential data strobes (DQS and DQS) are transmitted / received with data. Edge aligned with read * DCC enabling via EMRS2 setting * Full and reduced Strength Data-Output Drivers data and center-aligned with write data. * 1K page size * DLL aligns DQ and DQS transitions with clock * Packages: P(G)-TFBGA-60 for x4 & x8 components, * DQS can be disabled for single-ended data strobe operation P(G)-TFBGA-84 for x16 components * RoHS Compliant Products1) * Commands entered on each positive clock edge, data and data mask are referenced to both edges of DQS * All Speed grades faster than DDR2-400 comply with DDR2-400 timing specifications when run at a clock rate * Data masks (DM) for write data * Posted CAS by programmable additive latency for better of 200 MHz. command and data bus efficiency
TABLE 1
Performance Tables for -25(F)
Product Type Speed Code Speed Grade Max. Clock Frequency @CL6 @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time -25F DDR2-800D 5-5-5 -2.5 DDR2-800E 6-6-6 400 333 266 200 15 15 45 60 Unit -- MHz MHz MHz MHz ns ns ns ns
fCK6 fCK5 fCK4 fCK3 tRCD tRP tRAS tRC
400 400 266 200 12.5 12.5 45 57.5
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
3
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 2
Performance Table for -3(S)
Product Type Speed Code Speed Grade
www..com
-3 DDR2-667C 4-4-4
-3S DDR2-667D 5-5-5 333 266 200 15 15 45 60
Unit -- MHz MHz MHz ns ns ns ns
Max. Clock Frequency
@CL5 @CL4 @CL3
Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time
fCK5 fCK4 fCK3 tRCD tRP tRAS tRC
333 333 200 12 12 45 57
TABLE 3
Performance table for -3.7
Product Type Speed Code Speed Grade Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time -3.7 DDR2-533C 4-4-4 Unit -- MHz MHz MHz ns ns ns ns
fCK5 fCK4 fCK3 tRCD tRP tRAS tRC
266 266 200 15 15 45 60
TABLE 4
Performance Table for -5
Product Type Speed Code Speed Grade Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time -5 DDR2-400B 3-3-3 Units -- MHz MHz MHz ns ns ns ns
fCK5 fCK4 fCK3 tRCD tRP tRAS tRC
200 200 200 15 15 40 55
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
4
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
1.2
Description
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion. A is used to convey row, column and bank address information in a RAS-CAS multiplexing style. The DDR2 device operates with a 1.8 V 0.1 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The DDR2 SDRAM is available in P(G)-TFBGA-60 and P(G)TFBGA-84 packages.
The 256-Mbit Double-Data-Rate-Two SDRAM is a highspeed CMOS Synchronous DRAM device containing 268,435,456 bits and internally configured as a quad-bank DRAM. The device is organized as either 16 Mbit x 4 I/O x 4 banks, 8 Mbit x 8 I/O x 4 banks or 4 Mbit x16 I/O x 4 banks chip. These synchronous devices achieve high speed www..com transfer rates starting at 400 Mb/sec/pin for general applications. See Table 1 for performance figures. The device is designed to comply with all DDR2 DRAM key features: * Posted CAS with additive latency, * Write latency = read latency - 1, * Normal and weak strength data-output driver, * Off-Chip Driver (OCD) impedance adjustment * On-Die Termination (ODT) function.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
5
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 5
Ordering Information for Lead-Free Products (RoHS Compliant)
Product Type HYB18T256400BF-25F
www..com
Org. Speed x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 DDR2-800D DDR2-800D DDR2-800D DDR2-800E DDR2-800E DDR2-800E DDR2-667C DDR2-667C DDR2-667C DDR2-667D DDR2-667D DDR2-667D DDR2-533C DDR2-533C DDR2-533C DDR2-533C DDR2-533C DDR2-533C DDR2-400B DDR2-400B DDR2-400B
CAS-RCD-RP Latencies1) 5-5-5 5-5-5 5-5-5 6-6-6 6-6-6 6-6-6 4-4-4 4-4-4 4-4-4 5-5-5 5-5-5 5-5-5 4-4-4 4-4-4 4-4-4 4-4-4 4-4-4 4-4-4 3-3-3 3-3-3 3-3-3
Clock (MHz) 400 400 400 400 400 400 333 333 333 333 333 333 266 266 266 266 266 266 200 200 200
Package PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84
Note
2)
Standard Temperature Range (0 C - +70 C) HYB18T256800BF-25F HYB18T256160BF-25F HYB18T256400BF-2.5 HYB18T256800BF-2.5 HYB18T256160BF-2.5 HYB18T256400BF-3 HYB18T256800BF-3 HYB18T256160BF-3 HYB18T256400BF-3S HYB18T256800BF-3S HYB18T256160BF-3S HYB18T256400BF-3.7 HYB18T256800BF-3.7 HYB18T256160BF-3.7 HYB18T256400BFL-3.7 HYB18T256800BFL-3.7 HYB18T256160BFL-3.7 HYB18T256400BF-5 HYB18T256800BF-5 HYB18T256160BF-5
1) CAS: Column Address Strobe; RCD: Row Column Delay; RP: Row Precharge 2) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
6
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 6
Ordering Information for Lead-Free Products (RoHS Compliant)
Product Type HYI18T256400BF-25F
www..com
Org. Speed x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 DDR2-800D DDR2-800D DDR2-800D DDR2-800E DDR2-800E DDR2-800E DDR2-667C DDR2-667C DDR2-667C DDR2-667D DDR2-667D DDR2-667D DDR2-533C DDR2-533C DDR2-533C DDR2-400B DDR2-400B DDR2-400B
CAS-RCD-RP Latencies1) 5-5-5 5-5-5 5-5-5 6-6-6 6-6-6 6-6-6 4-4-4 4-4-4 4-4-4 5-5-5 5-5-5 5-5-5 4-4-4 4-4-4 4-4-4 3-3-3 3-3-3 3-3-3
Clock (MHz) 400 400 400 400 400 400 333 333 333 333 333 333 266 266 266 200 200 200
Package PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84
Note
2)
Industrial Temperature Range (-40 C - +85 C) HYI18T256800BF-25F HYI18T256160BF-25F HYI18T256400BF-2.5 HYI18T256800BF-2.5 HYI18T256160BF-2.5 HYI18T256400BF-3 HYI18T256800BF-3 HYI18T256160BF-3 HYI18T256400BF-3S HYI18T256800BF-3S HYI18T256160BF-3S HYI18T256400BF-3.7 HYI18T256800BF-3.7 HYI18T256160BF-3.7 HYI18T256400BF-5 HYI18T256800BF-5 HYI18T256160BF-5
1) CAS: Column Address Strobe; RCD: Row Column Delay; RP: Row Precharge 2) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
7
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 7
Ordering Information for Lead-Containing Products
Product Type HYB18T256400BC-25F
www..com
Org. x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16
Speed DDR2-800D DDR2-800D DDR2-800D DDR2-800E DDR2-800E DDR2-800E DDR2-667C DDR2-667C DDR2-667C DDR2-667D DDR2-667D DDR2-667D DDR2-533C DDR2-533C DDR2-533C DDR2-400B DDR2-400B DDR2-400B
CAS-RCD-RP Latencies1) 5-5-5 5-5-5 5-5-5 6-6-6 6-6-6 6-6-6 4-4-4 4-4-4 4-4-4 5-5-5 5-5-5 5-5-5 4-4-4 4-4-4 4-4-4 3-3-3 3-3-3 3-3-3
Clock (MHz) 400 400 400 400 400 400 333 333 333 333 333 333 266 266 266 200 200 200
Package P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84
Standard Temperature Range (0 C - +70 C) HYB18T256800BC-25F HYB18T256160BC-25F HYB18T256400BC-2.5 HYB18T256800BC-2.5 HYB18T256160BC-2.5 HYB18T256400BC-3 HYB18T256800BC-3 HYB18T256160BC-3 HYB18T256400BC-3S HYB18T256800BC-3S HYB18T256160BC-3S HYB18T256400BC-3.7 HYB18T256800BC-3.7 HYB18T256160BC-3.7 HYB18T256400BC-5 HYB18T256800BC-5 HYB18T256160BC-5
1) CAS: Column Address Strobe; RCD: Row Column Delay; RP: Row Precharge
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
8
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 8
Ordering Information for Lead-Containing Products
Product Type HYI18T256400BC-25F
www..com
Org. x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16
Speed DDR2-800D DDR2-800D DDR2-800D DDR2-800E DDR2-800E DDR2-800E DDR2-667C DDR2-667C DDR2-667C DDR2-667D DDR2-667D DDR2-667D DDR2-533C DDR2-533C DDR2-533C DDR2-400B DDR2-400B DDR2-400B
CAS-RCD-RP Latencies1) 5-5-5 5-5-5 5-5-5 6-6-6 6-6-6 6-6-6 4-4-4 4-4-4 4-4-4 5-5-5 5-5-5 5-5-5 4-4-4 4-4-4 4-4-4 3-3-3 3-3-3 3-3-3
Clock (MHz) 400 400 400 400 400 400 333 333 333 333 333 333 266 266 266 200 200 200
Package P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 P-TFBGA-60 P-TFBGA-84
Industrial Temperature Range (-40 C - +85 C) HYI18T256800BC-25F HYI18T256160BC-25F HYI18T256400BC-2.5 HYI18T256800BC-2.5 HYI18T256160BC-2.5 HYI18T256400BC-3 HYI18T256800BC-3 HYI18T256160BC-3 HYI18T256400BC-3S HYI18T256800BC-3S HYI18T256160BC-3S HYI18T256400BC-3.7 HYI18T256800BC-3.7 HYI18T256160BC-3.7 HYI18T256400BC-5 HYI18T256800BC-5 HYI18T256160BC-5
1) CAS: Column Address Strobe; RCD: Row Column Delay; RP: Row Precharge
Note: For product nomenclature see Chapter 9 of this data sheet
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
9
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
2
www..com
Configuration
Chip Configuration for PG-TFBGA-60
This chapter contains the chip configuration, addressing and block diagrams.
2.1
The chip configuration of a DDR2 SDRAM is listed by function in Table 9. The abbreviations used in the Ball# columns are explained in Table 10 and Table 11 respectively. The ball numbering for the FBGA package is depicted in figures.
TABLE 9
Chip Configuration of DDR2 SDRAM
Ball# Name Ball Type I I I I I I I I I I I I I I I I I I I I I I I Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL Address Signal 12:0, Address Signal 10/Autoprecharge Chip Select Bank Address Bus 1:0 Clock Enable Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Function
Clock Signals x4x8 organization E8 F8 F2 F7 G7 F3 G8 G2 G3 H8 H3 H7 J2 J8 J3 J7 K2 K8 K3 H2 K7 L2 CK CK CKE RAS CAS WE CS BA0 BA1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 AP A11 A12 Clock Signal CK, Complementary Clock Signal CK
Control Signals x4x8 organizations
Address Signals x4x8 organizations
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
10
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Ball# L8
Name A13 NC
Ball Type I - I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O O O I PWR PWR PWR PWR AI PWR PWR PWR PWR NC NC
Buffer Type SSTL - SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL - - - - - - - - - - -
Function Address Signal 13 Note: 256 Mbit components and Data Signal 3:0
Data Signals x4x8 organization
www..com
C8
DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQS DQS RDQS RDQS DM
C2 D7 D3 D1 D9 B1 B9 B7 A8
Data Signal 7:4
Data Strobex4x8 organizations Data Strobe
Data Strobe x8 organisation B3 A2 B3 Read Data Strobe
Data Mask x4x8 organizations Data Mask I/O Driver Power Supply Power Supply I/O Driver Power Supply Power Supply I/O Reference Voltage Power Supply Power Supply Power Supply Power Supply Not Connected Not Connected Power Supplies x4x8 organization A9,C1,C3,C7,C VDDQ 9
VDD A7,B2,B8,D2,D VSSQ
A1 8 A3,E3 E2 E1 E9,H9,L1 E7 J1,K9 G1, L3,L7, L8
VSS VREF VDDL VDD VSSDL VSS
NC
Power Supplies x4x8 organizations
Not Connected x4x8 organization Not Connected x4 organization A2, B1, B9, D1, NC D9 F9 ODT
Other Balls x4x8 organizations I SSTL On-Die Termination Control
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
11
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 10
Abbreviations for Ball Type
Abbreviation I O
www..com
Description Standard input-only ball. Digital levels. Output. Digital levels. I/O is a bidirectional input/output signal. Input. Analog levels. Power Ground Not Connected
I/O AI
PWR GND NC
TABLE 11
Abbreviations for Buffer Type
Abbreviation SSTL LV-CMOS CMOS OD Description Serial Stub Terminated Logic (SSTL_18) Low Voltage CMOS CMOS Levels Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
12
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Chip Configuration for x4 components, PG-TFBGA-60 (top view)
FIGURE 1
www..com
Notes 1. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 2. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
13
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Chip Configuration for x8 components, PG-TFBGA-60 (top view)
FIGURE 2
www..com
Notes 1. 2. 3. 4. RDQS / RDQS are enabled by EMRS(1) command. If RDQS / RDQS is enabled, the DM function is disabled When enabled, RDQS & RDQS are used as strobe signals during reads. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 5. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
14
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
2.2
Chip Configuration for P(G)-TFBGA-84
The chip configuration of a DDR2 SDRAM is listed by function in Table 9. The abbreviations used in the Ball# Type columns are explained in Table 10 and Table 11 respectively.
TABLE 12
www..com
Chip Configuration of DDR SDRAM
Name Ball Type I I I I I I I I I I I I I I I I I I I I I I I I/O I/O I/O I/O I/O I/O I/O Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL Data Signal 15:0 Address Signal 12:0,Address Signal 10/Autoprecharge Chip Select Bank Address Bus 1:0 Clock Enable Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Function
Ball#
Clock Signals x16 Organization J8 K8 K2 K7 L7 K3 L8 L2 L3 M8 M3 M7 N2 N8 N3 N7 P2 P8 P3 M2 P7 R2 G8 G2 H7 H3 H1 H9 F1 CK CK CKE RAS CAS WE CS BA0 BA1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 AP A11 A12 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 Clock Signal CK, CK
Control Signals x16 Organization
Address Signals x16 Organization
Data Signals x16 Organization
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
15
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Ball# F9 C8 C2
www..com
Name DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 UDQS UDQS LDQS LDQS UDM LDM
Ball Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I AI PWR
Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL - -
Function Data Signal 15:0
D7 D3 D1 D9 B1 B9
Data Strobe x16 Organization B7 A8 F7 E8 B3 F3 J2 Data Strobe Upper Byte Data Strobe Lower Byte
Data Mask x16 Organization Data Mask Upper Byte Data Mask Lower Byte I/O Reference Voltage I/O Driver Power Supply
Power Supplies x16 Organization
VREF C1, C3, C7, C9, VDDQ
E9, G1, G3, G7, G9 J1
VDDL A1, E1, J9, M9, VDD
R1 A7, A9, D2, D8, VSSQ E7, F2, F8, H2, H8 J7
PWR PWR PWR
- - -
Power Supply Power Supply Power Supply
VSSDL
PWR PWR
- -
Power Supply Power Supply
A3, E3, J3, N1, VSS P9 A2, E2, L1, R3, NC R7, R8 K9 ODT
Not Connected x16 Organization NC - Not Connected
Other Balls x16 Organization I SSTL On-Die Termination Control
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
16
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 13
Abbreviations for Ball Type
Abbreviation I O
www..com
Description Standard input-only ball. Digital levels. Output. Digital levels. I/O is a bidirectional input/output signal. Input. Analog levels. Power Ground Not Connected
I/O AI
PWR GND NC
TABLE 14
Abbreviations for Buffer Type
Abbreviation SSTL LV-CMOS CMOS OD Description Serial Stub Terminated Logic (SSTL_18) Low Voltage CMOS CMOS Levels Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
17
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Ball Configuration for x16 components, PG-TFBGA-84 (top view)
FIGURE 3
www..com
Notes 1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0] 2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8] 3. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
18
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
2.3
256-Mbit DDR2 Addressing
TABLE 15
DDR2 Addressing for x4 Organization
This chapter describes the 256-Mbit DDR2 addressing.
www..com Configuration
64Mb x 4 BA[1:0] 4 A10 / AP A[12:0]
1)
Note
Bank Address Number of Banks Auto-Precharge Row Address Column Address Number of Column Address Bits Number of I/Os Page Size [Bytes]
1) Referred to as 'org' 2) Referred to as 'colbits' 3) PageSize = 2colbits x org/8 [Bytes]
A11, A[9:0] 11 4 1024 (1K)
3) 2)
TABLE 16
DDR2 Addressing for x8 Organization
Configuration Bank Address Number of Banks Auto-Precharge Row Address Column Address Number of Column Address Bits Number of I/Os Page Size [Bytes]
1) Referred to as 'org' 2) Referred to as 'colbits' 3) PageSize = 2colbits x org/8 [Bytes]
32Mb x 8 BA[1:0] 4 A10 / AP A[12:0] A[9:0] 10 8
1)
Note
2)
1024 (1K)
3)
TABLE 17
DDR2 Addressing for x16 Organization
Configuration Bank Address Number of Banks Auto-Precharge Row Address 16Mb x 161) BA[1:0] 4 A10 / AP A[12:0] Note
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
19
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Configuration Column Address Number of Column Address Bits Number of I/Os Page Size [Bytes]
1) Referred to as 'org' www..com 2) Referred to as 'colbits' 3) PageSize = 2colbits x org/8 [Bytes]
16Mb x 161) A[8:0] 9 16 1024 (1K)
Note
2)
3)
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
20
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
3
www..com
Functional Description
This chapter contains the functional description.
TABLE 18
Mode Register Definition (BA[2:0] = 000B)
Field BA2 Bits 16 Type1) reg. addr. Description Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA1 BA0 A13 15 14 13 BA2 Bank Address Bank Address [1] BA1 Bank Address 0B Bank Address [0] 0B BA0 Bank Address Address Bus[13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B PD 12 w A13 Address bit 13 Active Power-Down Mode Select 0B PD Fast exit 1B PD Slow exit Write Recovery2) Note: All other bit combinations are illegal. 001B 010B 011B 100B 101B DLL 8 w WR 2 WR 3 WR 4 WR 5 WR 6
WR
[11:9]
w
DLL Reset 0B DLL No 1B DLL Yes Test Mode 0B TM Normal Mode TM Vendor specific test mode 1B
TM
7
w
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
21
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Field CL
Bits [6:4]
Type1) w
Description CAS Latency Note: All other bit combinations are illegal. 011B 100B 101B 110B 111B CL 3 CL 4 CL 5 CL 6 CL 7
www..com
BT
3
w
Burst Type 0B BT Sequential BT Interleaved 1B Burst Length Note: All other bit combinations are illegal. 010B BL 4 011B BL 8
BL
[2:0]
w
1) w = write only register bits 2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR [cycles] tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN.
TABLE 19
Extended Mode Register Definition (BA[2:0] = 001B)
Field BA2 Bits 16 Type1) reg. addr. Description Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA1 BA0 A13 15 14 13 w BA2 Bank Address Bank Address [1] 0B BA1 Bank Address Bank Address [0] 1B BA0 Bank Address Address Bus [13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B Qoff 12 w A13 Address bit 13 Output Disable 0B QOff Output buffers enabled 1B QOff Output buffers disabled
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
22
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Field RDQS
Bits 11
Type1) w
Description Read Data Strobe Output (RDQS, RDQS) 0B RDQS Disable RDQS Enable 1B Complement Data Strobe (DQS Output) DQS Enable 0B 1B DQS Disable Off-Chip Driver Calibration Program 000B OCD OCD calibration mode exit, maintain setting 001B OCD Drive (1) 010B OCD Drive (0) 100B OCD Adjust mode 111B OCD OCD calibration default Additive Latency Note: All other bit combinations are illegal. 000B 001B 010B 011B 100B 101B AL 0 AL 1 AL 2 AL 3 AL 4 AL 5
DQS
www..com
10
w
OCD [9:7] Program
w
AL
[5:3]
w
RTT
6,2
w
Nominal Termination Resistance of ODT Note: See Table 30 "ODT DC Electrical Characteristics" on Page 31 00B 01B 10B 11B RTT (ODT disabled) RTT 75 Ohm RTT 150 Ohm RTT 50 Ohm
DIC
1
w
Off-chip Driver Impedance Control 0B DIC Full (Driver Size = 100%) 1B DIC Reduced DLL Enable DLL Enable 0B 1B DLL Disable
DLL
0
w
1) w = write only register bits
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
23
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
www..com
TABLE 20
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B)
Type1) w Description Bank Address Note: BA2 is not available on 256 Mbit and 512 Mbit components 0B BA2 Bank Address Bank Adress 00B BA MRS 01B BA EMRS(1) 10B BA EMRS(2) 11B BA EMRS(3): Reserved Address Bus Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 000000B A Address bits Address Bus, High Temperature Self Refresh Rate for TCASE > 85C 0B A7 disable 1B A7 enable 2) Address Bus 000B A Address bits Address Bus, Duty Cycle Correction (DCC) A3 DCC disabled 0B 1B A3 DCC enabled Address Bus, Partial Array Self Refresh for 4 Banks3) Note: Only for 256 Mbit and 512 Mbit components 000B 001B 010B 011B 100B 101B 110B 111B PASR0 Full Array PASR1 Half Array (BA[1:0]=00, 01) PASR2 Quarter Array (BA[1:0]=00) PASR3 Not defined PASR4 3/4 array (BA[1:0]=01, 10, 11) PASR5 Half array (BA[1:0]=10, 11) PASR6 Quarter array (BA[1:0]=11) PASR7 Not defined
Field BA2
Bits 16
BA
[15:14]
w
A
[13:8]
w
SRF
7
w
A DCC
[6:4] 3
w w
Partial Self Refresh for 4 banks PASR [2:0] w
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
24
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1) w
Description Address Bus, Partial Array Self Refresh for 8 Banks3) Note: Only for 1G and 2G components 000B 001B 010B 011B 100B 101B 110B 111B PASR0 Full Array PASR1 Half Array (BA[2:0]=000, 001, 010 & 011) PASR2 Quarter Array (BA[2:0]=000, 001) PASR3 1/8 array (BA[2:0] = 000) PASR4 3/4 array (BA[2:0]= 010, 011, 100, 101, 110 & 111) PASR5 Half array (BA[2:0]=100, 101, 110 & 111) PASR6 Quarter array (BA[2:0]= 110 & 111) PASR7 1/8 array(BA[2:0]=111)
Partial Self Refresh for 8 banks PASR [2:0]
www..com
1) w = write only 2) When DRAM is operated at 85C TCase 95C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self refresh mode can be entered. 3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued
TABLE 21
EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B)
Field BA2 Bits 16 Type1) reg.addr Description Bank Address[2] Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA1 BA0 A 15 14 [13:0] w BA2 Bank Address Bank Adress[1] BA1 Bank Address 1B Bank Adress[0] 1B BA0 Bank Address Address Bus[13:0] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 00000000000000BA[13:0] Address bits
1) w = write only
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
25
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 22
ODT Truth Table
Input Pin x4 Components DQ[3:0]
www..com
EMRS(1) Address Bit A10 X X 0 X X X 0 X 0 X X X X 0 X 0 X X
EMRS(1) Address Bit A11
DQS DQS DM
X
x8 Components DQ[7:0] DQS DQS RDQS RDQS DM x16 Components DQ[7:0] DQ[15:8] LDQS LDQS UDQS UDQS LDM UDM
X 1 1 0
X X
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
26
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 23
Burst Length and Sequence
Burst Length 4
www..com
Starting Address (A2 A1 A0) x00 x01 x1 0 x1 1
Sequential Addressing (decimal) 0, 1, 2, 3 1, 2, 3, 0 2, 3, 0, 1 3, 0, 1, 2 0, 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 0, 5, 6, 7, 4 2, 3, 0, 1, 6, 7, 4, 5 3, 0, 1, 2, 7, 4, 5, 6 4, 5, 6, 7, 0, 1, 2, 3 5, 6, 7, 4, 1, 2, 3, 0 6, 7, 4, 5, 2, 3, 0, 1 7, 4, 5, 6, 3, 0, 1, 2
Interleave Addressing (decimal) 0, 1, 2, 3 1, 0, 3, 2 2, 3, 0, 1 3, 2, 1, 0 0, 1, 2, 3, 4, 5, 6, 7 1, 0, 3, 2, 5, 4, 7, 6 2, 3, 0, 1, 6, 7, 4, 5 3, 2, 1, 0, 7, 6, 5, 4 4, 5, 6, 7, 0, 1, 2, 3 5, 4, 7, 6, 1, 0, 3, 2 6, 7, 4, 5, 2, 3, 0, 1 7, 6, 5, 4, 3, 2, 1, 0
8
000 001 010 011 100 101 110 111
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
27
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
4
www..com
Truth Tables
The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two SDRAM.
TABLE 24
Command Truth Table
Function CKE Previous Cycle (Extended) Mode Register Set Auto-Refresh Self-Refresh Entry Self-Refresh Exit Single Bank Precharge Precharge all Banks Bank Activate Write Write with AutoPrecharge Read Read with AutoPrecharge No Operation Device Deselect Power Down Entry Power Down Exit H H H L H H H H H H H H H H L Current Cycle H H L H H H H H H H H X X L H L L L H L L L L L L L L L H H L H L L L L X H L L L H H H H H X X H X H CS RAS CAS WE BA0 BA1 A[12:11] A10 A[9:0] Note1)2)3)
L L L X H H H H L L L L H X X H X H
L H H X H L L H L L H H H X X H X H
BA X X X BA X BA BA BA BA BA X X X X
OP Code X X X X X Column Column Column Column X X X X X X X L H L H L H X X X X X X X X X Column Column Column Column X X X X
4)5)
4) 4)6) 4)6)7)
4)5) 4) 4)5) 4)5)8) 4)5)8)
Row Address
4)5)8) 4)5)8)
4) 4) 4)9)
4)9)
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 2) "X" means "H or L (but a defined logic level)". 3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock. 5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register. 6) VREF must be maintained during Self Refresh operation. 7) Self Refresh Exit is asynchronous. 8) Burst reads or writes at BL = 4 cannot be terminated. 9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
28
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 25
Clock Enable (CKE) Truth Table for Synchronous Transitions
Current State1) CKE Previous Cycle6) (N-1)
www..com
Current Cycle6) (N) L H L H L L L H
Command (N)2) 3) RAS, CAS, WE
Action (N)2)
Note4)5)
Power-Down Self Refresh Bank(s) Active All Banks Idle
L L L L H H H
X DESELECT or NOP X DESELECT or NOP DESELECT or NOP DESELECT or NOP AUTOREFRESH
Maintain Power-Down Power-Down Exit Maintain Self Refresh Self Refresh Exit Active Power-Down Entry Precharge Power-Down Entry Self Refresh Entry
7)8)11) 7)9)10)11) 8)11)12) 9)11)12)13)14) 7)9)10)11)15) 9)10)11)15)
7)11)14)16) 17)
Any State other than listed above
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)
H
Refer to the Command Truth Table
12) 13) 14) 15) 16) 17)
Current state is the state of the DDR2 SDRAM immediately prior to clock edge N. Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. CKE must be maintained HIGH while the device is in OCD calibration mode. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh requirements "X" means "don't care (including floating around VREF)" in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to "1" in EMRS(1)). All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. VREF must be maintained during Self Refresh operation. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read commands may be issued only after tXSRD (200 clocks) is satisfied. Valid commands for Self Refresh Exit are NOP and DESELCT only. Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or Refresh operations are in progress. Self Refresh mode can only be entered from the All Banks Idle state. Must be a legal command as defined in the Command Truth Table.
TABLE 26
Data Mask (DM) Truth Table
Name (Function) Write Enable Write Inhibit
1) Used to mask write data; provided coincident with the corresponding data.
DM L H
DQs Valid X
Note
1) 1)
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
29
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
5
www..com
Electrical Characteristics
Absolute Maximum Ratings
TABLE 27
Absolute Maximum Ratings
This chapter describes the electrical characteristics.
5.1
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 27 at any time.
Symbol
Parameter
Rating Min. Max. +2.3 +2.3 +2.3 +2.3
Unit
Note
Storage Temperature -55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
VDD VDDQ VDDL VIN, VOUT TSTG
Voltage on VDD pin relative to VSS Voltage on VDDQ pin relative to VSS Voltage on VDDL pin relative to VSS Voltage on any pin relative to VSS
-1.0 -0.5 -0.5 -0.5
V V V V C
1) 1)2) 1)2) 1) 1)2)
Attention: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 28
DRAM Component Operating Temperature Range
Symbol Parameter Rating Min. Max. 95 85 C C
1)2)3)4)
Unit
Notes
TOPER
Operating Temperature
0 -40
for HYB...
for HYI...
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 C for standard products (HYB.....) and -40 - +85 for industrial temperature range products (HYI.....) under all other specification parameters. 3) Above 85 C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 s 4) When operating this product in the 85 C to 95 C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
30
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
5.2
DC Characteristics
TABLE 29
Recommended DC Operating Conditions (SSTL_18)
www..com Symbol
Parameter
Rating Min. Typ. 1.8 1.8 1.8 0.5 x VDDQ Max. 1.9 1.9 1.9 0.51 x VDDQ
Unit
Note
VDD VDDDL VDDQ VREF VTT
1) 2) 3) 4)
Supply Voltage Supply Voltage for DLL Supply Voltage for Output Input Reference Voltage
1.7 1.7 1.7 0.49 x VDDQ
V V V V
1) 1) 1) 2)3)
4) Termination Voltage VREF - 0.04 VREF VREF + 0.04 V VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. Peak to peak ac noise on VREF may not exceed 2% VREF (dc) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in die dc level of VREF.
TABLE 30
ODT DC Electrical Characteristics
Parameter / Condition Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm Deviation of VM with respect to VDDQ / 2
1)
Symbol Rtt1(eff) Rtt2(eff) Rtt3(eff) delta VM
Min. 60 120 40 -6.00
Nom. 75 150 50 --
Max. 90 180 60 + 6.00
Unit %
Note
1)
1)
1)
2)
Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively. Rtt(eff) = (VIH(ac) - VIL(ac)) /(I(VIHac) - I(VILac)). 2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) - 1) x 100%
TABLE 31
Input and Output Leakage Currents
Symbol Parameter / Condition Input Leakage Current; any input 0 V < VIN < VDD Output Leakage Current; 0 V < VOUT < VDDQ Min. -2 -5 Max. +2 +5 Unit A A Note
1) 2)
IIL IOL
1) All other pins not under test = 0 V 2) DQ's, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
31
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
5.3
DC & AC Characteristics
In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is verified by design and characterization but not subject to production test. In single ended mode, the DQS (and RDQS) signals are internally disabled and don't care.
DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the EMRS(1) "Enable DQS" mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single www..com ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF.
TABLE 32
DC & AC Logic Input Levels for DDR2-667 and DDR2-800
Symbol Parameter DDR2-667, DDR2-800 Min. Max. Units
VIH(dc) VIL(dc) VIH(ac) VIL(ac)
DC input logic high DC input low AC input logic high AC input low
VREF + 0.125
-0.3
VDDQ + 0.3 VREF - 0.125
--
V V V V
VREF + 0.200
--
VREF - 0.200
TABLE 33
DC & AC Logic Input Levels for DDR2-533 and DDR2-400
Symbol Parameter DDR2-533, DDR2-400 Min. Max. Units
VIH(dc) VIL(dc) VIH(ac) VIL(ac)
DC input logic high DC input low AC input logic high AC input low
VREF + 0.125
-0.3
VDDQ + 0.3 VREF - 0.125
--
V V V V
VREF + 0.250
--
VREF - 0.250
TABLE 34
Single-ended AC Input Test Conditions
Symbol Condition Input reference voltage Input signal maximum peak to peak swing Input signal minimum Slew Rate Value 0.5 x VDDQ 1.0 1.0 Unit V V V / ns Notes
1) 1) 2)3)
VREF VSWING.MAX
SLEW
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to VIL(ac).MAX for falling edges as shown in Figure 4 3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative transitions.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
32
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 4
Single-ended AC Input Test Conditions Diagram
www..com
TABLE 35
Differential DC and AC Input and Output Logic Levels
Symbol Parameter DC input signal voltage DC differential input voltage AC differential input voltage AC differential cross point input voltage AC differential cross point output voltage Min. -0.3 0.25 0.5 0.5 x VDDQ - 0.175 0.5 x VDDQ - 0.125 Max. Unit -- -- V V V Notes
1) 2) 3) 4) 5)
VIN(dc) VID(dc) VID(ac) VIX(ac) VOX(ac)
1) 2) 3) 4)
VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 0.5 x VDDQ + 0.175 0.5 x VDDQ + 0.125
indicates the voltage at which differential input signals must cross. 5) The value of VOX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross.
VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc. VID(dc) specifies the input differential voltage VTR- VCP required for switching. The minimum value is equal to VIH(dc) - VIL(dc). VID(ac) specifies the input differential voltage VTR - VCP required for switching. The minimum value is equal to VIH(ac) - VIL(ac). The value of VIX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
33
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 5
Differential DC and AC Input and Output Logic Levels Diagram
www..com
5.4
Output Buffer Characteristics
TABLE 36
SSTL_18 Output DC Current Drive
This chapter describes the Output Buffer Characteristics.
Symbol
Parameter Output Minimum Source DC Current
SSTL_18 -13.4
Unit mA
Notes
1)2)
2)3) Output Minimum Sink DC Current 13.4 mA 1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT-VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ - 280 mV. 2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by
IOH IOL
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement. 3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.
TABLE 37
SSTL_18 Output AC Test Conditions
Symbol Parameter Minimum Required Output Pull-up Maximum Required Output Pull-down SSTL_18 Unit V V Note
1) 1)
Output Timing Measurement Reference Level V 1) SSTL_18 test load for VOH and VOL is different from the referenced load described in Chapter 8.1. The SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that 335 mV must be developed
across the effectively 25 Ohm termination resistor (13.4 mA x 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA x 45 Ohm = 603 mV).
VOH VOL VOTR
VTT + 0.603 VTT - 0.603 0.5 x VDDQ
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
34
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 38
OCD Default Characteristics
Symbol -- --
www..com
Description Output Impedance Pull-up / Pull down mismatch Output Impedance step size for OCD calibration
Min. -- 0 0 1.5
Nominal -- -- --
Max. 4 1.5 5.0
Unit V / ns
Notes
1)2) 1)2)3) 4)
--
Output Slew Rate 1) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V
SOUT
1)5)6)7)8)
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT-VDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ - 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = -280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV. 3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage. 4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 0.75 Ohms under nominal conditions. 5) Slew Rates according to Chapter 8.2 VIL(ac) to VIH(ac) with the load specified in Figure 76. 6) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC. This is verified by design and characterization but not subject to production test. 7) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ's is included in tDQSQ and tQHS specification. 8) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
35
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
5.5
Input / Output Capacitance
TABLE 39
Input / Output Capacitance for DDR2-800
This chapter contains the input / output capacitance.
www..com Symbol
Parameter
DDR2-800 Min. Max. Unit pF pF pF pF pF pF
CCK CDCK CI CDI CIO CDIO
Input capacitance, CK and CK Input capacitance delta, CK and CK Input capacitance, all other input-only pins Input capacitance delta, all other input-only pins Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS
1.0
--
1.0
--
2.0 0.25 1.75 0.25 3.5 0.5
2.5
--
TABLE 40
Input / Output Capacitance for DDR2-667
Symbol Parameter DDR2-667 Min. CCK CDCK CI CDI CIO CDIO Input capacitance, CK and CK Input capacitance delta, CK and CK Input capacitance, all other input-only pins Input capacitance delta, all other input-only pins Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS Max. Unit pF pF pF pF pF pF
1.0
--
1.0
--
2.0 0.25 2.0 0.25 3.5 0.5
2.5
--
TABLE 41
Input / Output Capacitance for DDR2-533
Symbol Parameter DDR2-533 Min. CCK CDCK CI CDI Input capacitance, CK and CK Input capacitance delta, CK and CK Input capacitance, all other input-only pins Input capacitance delta, all other input-only pins Max. Unit pF pF pF pF
1.0
--
1.0
--
2.0 0.25 2.0 0.25
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
36
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Symbol
Parameter
DDR2-533 Min. Max. Unit pF pF
CIO CDIO
www..com
Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS
2.5
--
4.0 0.5
TABLE 42
Input / Output Capacitance for DDR2-400
Symbol Parameter DDR2-400 Min. CCK CDCK CI CDI CIO CDIO Input capacitance, CK and CK Input capacitance delta, CK and CK Input capacitance, all other input-only pins Input capacitance delta, all other input-only pins Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS Max. Unit pF pF pF pF pF pF
1.0
--
1.0
--
2.0 0.25 2.0 0.25 4.0 0.5
2.5
--
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
37
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
5.6
Overshoot and Undershoot Specification
TABLE 43
AC Overshoot / Undershoot Specification for Address and Control Pins
This chapter contains overshoot and undershoot specification.
www..com Parameter
DDR2-400 0.9 0.9 1.33 1.33
DDR2-533 0.9 0.9 1.00 1.00
DDR2-667 0.9 0.9 0.80 0.80
DDR2-800 0.9 0.9 0.66 0.66
Unit V V V.ns V.ns
Maximum peak amplitude allowed for overshoot area Maximum peak amplitude allowed for undershoot area Maximum overshoot area above VDD Maximum undershoot area below VSS
FIGURE 6
AC Overshoot / Undershoot Diagram for Address and Control Pins
TABLE 44
AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins
Parameter Maximum peak amplitude allowed for overshoot area Maximum peak amplitude allowed for undershoot area Maximum overshoot area above VDDQ Maximum undershoot area below VSSQ DDR2-400 0.9 0.9 0.38 0.38 DDR2-533 0.9 0.9 0.28 0.28 DDR2-667 0.9 0.9 0.23 0.23 DDR2-800 0.9 0.9 0.23 0.23 Unit V V V.ns V.ns
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
38
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 7
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins
www..com
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
39
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
6
www..com
Specifications and Conditions
TABLE 45
IDD Measurement Conditions
Symbol Note
1)2)3)4) 5)6)
This chapter describes the Specifications and Conditions.
Parameter
Operating Current - One bank Active - Precharge IDD0 tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. Operating Current - One bank Active - Read - Precharge IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching.
IDD1
1)2)3)4)5 )6)
Precharge Power-Down Current IDD2P All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are floating. Precharge Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5 )6)
IDD2N
1)2)3)4)5 )6)
Precharge Quiet Standby Current IDD2Q All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data bus inputs are floating. Active Power-Down Current All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs are floating. MRS A12 bit is set to "0" (Fast Power-down Exit). Active Power-Down Current All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit); Active Standby Current All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; Operating Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA. Operating Current Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; Burst Refresh Current tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5 )6)
IDD3P(0)
1)2)3)4)5 )6)
IDD3P(1)
1)2)3)4)5 )6)
IDD3N
1)2)3)4)5 )6)
IDD4R
1)2)3)4)5 )6)
IDD4W
1)2)3)4)5 )6)
IDD5B
1)2)3)4)5 )6)
Distributed Refresh Current IDD5D tCK = tCK(IDD), Refresh command every tREFI = 7.8 s interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5 )6)
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
40
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
Note
1)2)3)4)5 )6)
Self-Refresh Current IDD6 CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus inputs are floating. Operating Bank Interleave Read Current IDD7 1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 x tCK(IDD); tCK = tCK(IDD), tRC = www..com tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs are stable during deselects; Data bus is switching. 2. Timing pattern: DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks) DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks) DDR2-667-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks) DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks) DDR2-800-555: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D(22 clocks)
1) 2) 3) 4) 5) 6) 7)
1)2)3)4)5 )6)7)
DDR2-800-666: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D(23 clocks) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V IDD specifications are tested after the device is properly initialized. IDD parameter are specified with ODT disabled.
Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS. Definitions for IDD: see Table 46 Timing parameter minimum and maximum values for IDD current measurements are defined in chapter 7.. A = Activate, RA = Read with Auto-Precharge, D=DESELECT
TABLE 46
Definition for IDD
Parameter LOW HIGH STABLE FLOATING SWITCHING Description defined as VIN VIL(ac).MAX defined as VIN VIH(ac).MIN defined as inputs are stable at a HIGH or LOW level defined as inputs are VREF = VDDQ / 2 defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
41
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 47
IDD Specification
Symbol -25F DDR2 - 800
www..com
-2.5 DDR2 - 800 Max. 65 70 6.5 37 34 22 7.5 44 114 140 124 160 104 7.5 4 -- 135 140
-3 DDR2 - 667 Max. 64 70 6 33 30 19 7.5 39 105 127 108 140 97 7.5 4 -- 136 140
-3S DDR2 - 667 Max. 61 66 6 33 30 19 7.5 39 105 127 108 140 97 7.5 4 -- 130 134
-3.7 DDR2 - 533 Max. 55 60 6 29 26 17.5 7 33 84 105 90 115 92 7.5 4 2 126 135
-5 DDR2 - 400 Max. 54 58 6 27 23 16 7 29 74 100 75 105 90 7.5 4 -- 125 132
Unit
Note
Max. 70 75 6.5 37 34 22 7.5 44 114 140 124 160 104 7.5 4 -- 140 145
IDD0 IDD1 IDD2P IDD2N IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7
mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
x4/x8/x16 x4/x8/x16
1) 2)
x4/x8 x16 x4/x8 x16
3) 3) 3)
Standard Low power
x4/x8 x16
1) MRS(12)=0 2) MRS(12)=1 3) 0 TCASE 85 C.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
42
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
7
www..com
Timing Characteristics
Speed Grade Definitions
TABLE 48
Speed Grade Definition Speed Bins for DDR2-800
This chapter contains speed grade definition, AC timing parameter and ODT tables.
7.1
All Speed grades faster than DDR2-400B comply with DDR2-400B timing specifications (tCK = 5ns with tRAS = 40ns).
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 @ CL = 6 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol
DDR2-800D -2.5F 5-5-5 Min. 5 3.75 2.5 2.5 45 57.5 12.5 12.5 Max. 8 8 8 8 70000 -- -- --
DDR2-800E -2.5 6-6-6 Min. 5 3.75 3 2.5 45 60 15 15 Max. 8 8 8 8 70000 -- -- --
Unit
Note
tCK
-- ns ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tCK tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the "Reference Load for Timing Measurements". 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined . 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
43
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 49
Speed Grade Definition Speed Bins for DDR2-667
Speed Grade QAG Sort Name CAS-RCD-RP latencies www..com Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-667C -3 4-4-4 Min. 5 3 3 45 57 12 12 Max. 8 8 8 70000 -- -- -- DDR2-667D -3S 5-5-5 Min. 5 3.75 3 45 60 15 15 Max. 8 8 8 70000 -- -- -- Unit Notes
tCK
-- ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tRAS tRC tRCD tRP
1) imings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the "Reference Load for Timing Measurements". 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 50
Speed Grade Definition Speed Bins for DDR2-533C
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-533C -3.7 4-4-4 Min. 5 3.75 3.75 45 60 15 15 Max. 8 8 8 70000 -- -- -- Unit Note
tCK
-- ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the "Reference Load for Timing Measurements". 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
44
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 51
Speed Grade Definition Speed Bins for DDR2-400B
www..com Speed Grade
DDR2-400B -5 3-3-3 Symbol @ CL = 3 @ CL = 4 @ CL = 5 Min. 5 5 5 40 55 15 15 Max. 8 8 8 70000 -- -- --
Unit
Note
QAG Sort Name CAS-RCD-RP latencies Parameter Clock Frequency
tCK
-- ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time
tCK tCK tCK tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the "Reference Load for Timing Measurements" according to Chapter 8.1 only. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
45
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
7.2
Component AC Timing Parameters
TABLE 52
DRAM Component Timing Parameter by Speed Grade - DDR2-800
List of Timing Parameters Tables.
www..com Parameter
Symbol
DDR2-800 Min. Max. +400 -- 0.52 8000 -- 0.52 -- -- -- -- +350 -- -- 200 + 0.25 -- -- -- __
Unit
Notes1)2)3)4)5)6)
7)
DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width
tAC tCCD tCH.AVG tCK.AVG tCKE
-400 2 0.48 2500 3 0.48 WR + tnRP
ps nCK
8)
tCK.AVG
ps nCK
9)10) 9)10) 11)
tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY
asynchronously drops LOW DQ and DM input hold time
tCK.AVG
nCK ns ps
9)10) 12)13)
tIS + tCK .AVG + tIH
125 0.35 -350 0.35 0.35 -- - 0.25 50 0.2 0.2 Min(tCH.ABS, tCL.ABS) -- 250 0.6 175 2 x tAC.MIN
tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS
edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width Data-out high-impedance time from CK / CK
18)19)14)
tCK.AVG
ps
8)
tCK.AVG tCK.AVG
ps
15) 16)
tCK.AVG
ps
tDS.BASE tDSH tDSS tHP
17)18)19) 16) 16) 20)
tCK.AVG tCK.AVG
ps ps ps
tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD OCD drive mode output delay tOIT DQ/DQS output hold time from DQS tQH DQ hold skew factor tQHS
tAC.MAX
-- -- -- tAC.MAX
8)21) 22)24)
tCK.AVG
ps ps ps ns nCK ns ps ps
34) 25) 26) 23)24) 8)21) 8)21) 34)
tAC.MIN
0 2 0
tAC.MAX
12 -- 12 -- 300
tHP - tQHS
--
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
46
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-800 Min. Max. 7.8 3.9 -- -- 1.1 0.6 -- -- 0.6 -- -- -- -- -- -- --
Unit
Notes1)2)3)4)5)6)
7)
Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period www..com Precharge-All (4 banks) command period Read preamble Read postamble Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Exit self-refresh to read command Write command to DQS associated clock edges
tREFI tRFC tRP tRPRE tRPST tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR tXSRD
WL
-- -- 75
s s ns ns
27)28) 28)29) 30)
tRP
0.9 0.4 7.5 0.35 0.4 15 7.5 2 8 - AL 2
tCK.AVG tCK.AVG
ns
31)32) 31)33) 34)
tCK.AVG tCK.AVG
ns ns nCK nCK nCK ns nCK nCK
34) 34) 34)35)
tRFC +10
200 RL - 1
1) VDDQ = 1.8 V 0.1V; VDD = 1.8 V 0.1 V. 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8 of this datasheet. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined in Chapter 8.3 of this datasheet. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements. 7) New units, `tCK.AVG` and `nCK`, are introduced in DDR2-667 and DDR2-800. Unit `tCK.AVG` represents the actual tCK.AVG of the input clock under operation. Unit `nCK` represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, `tCK` is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10PER).MIN = - 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN - tERR(6-10PER).MAX = - 400 ps - 293 ps = - 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX - tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2-667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps - 293 ps = - 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations of Chapter 7.3). 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
47
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2-533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 9. 15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output www..com slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 9. 18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 10. 23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 10. 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 25) tQH = tHP - tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 27) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 28) 0 C TCASE 85 C 29) 85 C < TCASE 95 C 30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 8 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.PER.MIN = - 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG - 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.DUTY.MIN = - 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG - 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
48
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2-667 5-5-5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
www..com
TABLE 53
DRAM Component Timing Parameter by Speed Grade - DDR2-667
Symbol DDR2-667 Min. Max. +450 -- 0.52 8000 -- 0.52 -- -- -- -- +400 -- -- 240 + 0.25 -- -- -- __ ps nCK
8)
Parameter
Unit
Notes1)2)3)4)5)6)
7)
DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width
tAC tCCD tCH.AVG tCK.AVG tCKE
-450 2 0.48 3000 3 0.48 WR + tnRP
tCK.AVG
ps nCK
9)10)
11)
tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY
asynchronously drops LOW DQ and DM input hold time
tCK.AVG
nCK ns ps
9)10) 12)13)
tIS + tCK .AVG + tIH
175 0.35 -400 0.35 0.35 -- - 0.25 100 0.2 0.2 Min(tCH.ABS, tCL.ABS) -- 275 0.6 200 2 x tAC.MIN
tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS
edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width Data-out high-impedance time from CK / CK
18)19)14)
tCK.AVG
ps
8)
tCK.AVG tCK.AVG
ps
15) 16)
tCK.AVG
ps
tDS.BASE tDSH tDSS tHP
17)18)19) 16) 16) 20)
tCK.AVG tCK.AVG
ps ps ps
tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD tOIT OCD drive mode output delay DQ/DQS output hold time from DQS tQH
tAC.MAX
-- -- --
8)21) 24)22)
tCK.AVG
ps ps ps ns nCK ns ps
34) 25) 23)24) 8)21) 8)21) 34)
tAC.MIN
0 2 0
tAC.MAX tAC.MAX
12 -- 12 --
tHP - tQHS
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
49
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-667 Min. Max. 340 7.8 3.9 -- -- 1.1 0.6 -- -- 0.6 -- -- -- -- -- -- --
Unit
Notes1)2)3)4)5)6)
7)
DQ hold skew factor Average periodic refresh Interval
www..com Auto-Refresh to Active/Auto-Refresh command
tQHS tREFI tRFC tRP tRPRE tRPST tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR tXSRD
WL
-- -- -- 75
ps s s ns ns
26) 27)28) 28)29) 30)
period Precharge-All (4 banks) command period Read preamble Read postamble Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Exit self-refresh to read command Write command to DQS associated clock edges 1) VDDQ = 1.8 V 0.1V; VDD = 1.8 V 0.1 V.
tRP
0.9 0.4 7.5 0.35 0.4 15 7.5 2 7 - AL 2
tCK.AVG tCK.AVG
ns
31)32) 31)33) 34)
tCK.AVG tCK.AVG
ns ns nCK nCK nCK ns nCK nCK
34) 34) 34)35)
tRFC +10
200 RL-1
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8 of this datasheet. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined in Chapter 8.3 of this datasheet. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements. 7) New units, `tCK.AVG` and `nCK`, are introduced in DDR2-667 and DDR2-800. Unit `tCK.AVG` represents the actual tCK.AVG of the input clock under operation. Unit `nCK` represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, `tCK` is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10PER).MIN = - 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN - tERR(6-10PER).MAX = - 400 ps - 293 ps = - 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX - tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2-667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps - 293 ps = - 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations of Chapter 7.3).
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
50
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2-533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input www..com signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 9. 15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 9. 18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 10. 23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 10. 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 25) tQH = tHP - tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 27) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 28) 0 C TCASE 85 C 29) 85 C < TCASE 95 C 30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 8 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.PER.MIN = - 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG - 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
51
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.DUTY.MIN = - 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG - 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2-667 5-5-5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. www..com 35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
52
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 8
Method for calculating transitions and endpoint
www..com
FIGURE 9
Differential input waveform timing - tDS and tDS
FIGURE 10
Differential input waveform timing - tlS and tlH
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
53
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 54
DRAM Component Timing Parameter by Speed Grade - DDR2-533
Parameter Symbol DDR2-533 Min.
www..com
Unit Max. +500 -- 0.55 -- 0.55 -- -- -- -- -- +450 -- 300 + 0.25 -- -- -- -- ps
Notes1)2)3)4)5)
6)
DQ output access time from CK / CK CAS A to CAS B command period
CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time Minimum time clocks remain ON after CKE asynchronously drops LOW DQ and DM input hold time (differential data strobe)
tAC tCCD tCH tCKE tCL tDAL tDELAY tDH(base)
-500 2 0.45 3 0.45 WR + tRP
tCK tCK tCK tCK tCK
ns ps ps
7)17)
tIS + tCK + tIH
225 -25 0.35 -450 0.35 -- - 0.25 100 -25 0.2 0.2 MIN. (tCL, tCH) -- 375 0.6 250 2 x tAC.MIN
8)
9)
DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe)
10)
tDIPW tDQSCK tDQSL,H tDQSQ tDQSS tDS(base)
tCK
ps
tCK
ps
10)
tCK
ps ps
10)
DQ and DM input setup time (single ended data tDS1(base) strobe) DQS falling edge hold time from CK (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor
10)
tDSH
tCK tCK
11)
DQS falling edge to CK setup time (write cycle) tDSS
tHP tHZ tIH(base) tIPW tIS(base) tLZ(DQ) tLZ(DQS) tMOD tMRD tOIT tQH tQHS
tAC.MAX
-- -- --
ps ps
12) 10)
tCK
ps ps ps ns
10) 13) 13)
tAC.MIN
0 2 0
tAC.MAX tAC.MAX
12 -- 12 -- 400
tCK
ns ps
tHP -tQHS
--
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
54
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-533 Min. Max. 7.8 3.9 -- -- 1.1 0.60 -- -- -- -- 0.60 -- -- -- -- -- -- --
Unit
Notes1)2)3)4)5)
6)
Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command www..com period Precharge-All (4 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Active bank A to Active bank B command period Internal Read to Precharge command delay Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit active power-down mode to Read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit Self-Refresh to non-Read command Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 1) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V.
tREFI tREFI tRFC tRP tRPRE tRPST tRRD tRRD tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR tXSRD
WR
-- -- 75
s s ns ns
13)14) 15)17) 16)
tRP
0.9 0.40 7.5 10 7.5 0.25 0.40 15 7.5 2 6 - AL 2
tCK tCK
ns ns ns
13) 13) 13)17)
15)21)
tCK tCK
ns ns
18)
19) 20)
tCK tCK tCK
ns
20)
tRFC +10
200
tWR/tCK
tCK tCK
21)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8 of this datasheet. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined in Chapter 8.3 of this datasheet. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH).
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
55
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 14) 0 C TCASE 85 C 15) 85 C < TCASE 95 C 16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 17) The tRRD www..com timing parameter depends on the page size of the DRAM organization. See Table 5 "Ordering Information for Lead-Free Products (RoHS Compliant)" on Page 6. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 z. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In "standard active powerdown mode" (MR, A12 = "0") a fast power-down exit timing tXARD can be used. In "low active power-down mode" (MR, A12 ="1") a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS.
TABLE 55
DRAM Component Timing Parameter by Speed Grade - DDR2-400
Parameter Symbol DDR2-400 Min. DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time Minimum time clocks remain ON after CKE asynchronously drops LOW DQ and DM input hold time (differential data strobe) Max. +600 -- 0.55 -- 0.55 -- -- -- -- -- +500 -- 350 + 0.25 -- -- ps Unit Notes1)2)3)4)5)
6)
tAC tCCD tCH tCKE tCL tDAL tDELAY tDH(base)
-600 2 0.45 3 0.45 WR + tRP
tCK tCK tCK tCK tCK
ns ps ps
7)20)
tIS + tCK + tIH
275 -25 0.35 -500 0.35 -- - 0.25 150 -25
8)
9)
DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) DQ and DM input setup time (differential data strobe) DQ and DM input setup time (single ended data strobe)
10)
tDIPW tDQSCK tDQSL,H tDQSQ
tCK
ps
tCK
ps
10)
Write command to 1st DQS latching transition tDQSS
tCK
ps ps
10)
tDS(base) tDS1(base)
10)
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
56
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-400 Min. Max. -- --
Unit
Notes1)2)3)4)5)
6)
DQS falling edge hold time from CK (write cycle) Clock half www..com period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Active bank A to Active bank B command period Internal Read to Precharge command delay Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit active power-down mode to Read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit Self-Refresh to non-Read command
tDSH
0.2 0.2 MIN. (tCL, tCH) -- 475 0.6 350 2 x tAC.MIN
tCK tCK
11)
DQS falling edge to CK setup time (write cycle) tDSS
tHP tHZ tIH(base) tIPW tIS(base) tLZ(DQ) tLZ(DQS) tMOD tMRD tOIT tQH tQHS tREFI tREFI tRFC tRP tRPRE tRPST tRRD tRRD tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR
tAC.MAX
-- -- --
ps ps
12) 10)
tCK
ps ps ps ns
10) 13) 13)
tAC.MIN
0 2 0
tAC.MAX tAC.MAX
12 -- 12 -- 450 7.8 3.9 -- -- 1.1 0.60 -- -- -- -- 0.60 -- -- -- -- -- --
tCK
ns ps s s ns ns
13)14) 15)17) 16)
tHP -tQHS
-- -- -- 75
tRP
0.9 0.40 7.5 10 7.5 0.25 0.40 15 10 2 6 - AL 2
tCK tCK
ns ns ns
13) 13) 13)17)
15)21)
tCK tCK
ns ns
18)
19) 20)
tCK tCK tCK
ns
20)
tRFC +10
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
57
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-400 Min. Max. --
Unit
Notes1)2)3)4)5)
6)
Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 1) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V. www..com
tXSRD
WR
200
tWR/tCK
tCK tCK
21)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8 of this datasheet. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS, RDQS / RDQS is defined in Chapter 8.3 of this datasheet. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 14) 0 C TCASE 85 C 15) 85 C < TCASE 95 C 16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 "Ordering Information for Lead-Free Products (RoHS Compliant)" on Page 6. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 z. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In "standard active powerdown mode" (MR, A12 = "0") a fast power-down exit timing tXARD can be used. In "low active power-down mode" (MR, A12 ="1") a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
58
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
7.3
Jitter Definition and Clock Jitter Specification
Generally, jitter is defined as "the short-term variation of a signal with respect to its ideal position in time". The following table provides an overview of the terminology.
TABLE 56
www..com
Average Clock and Jitter Symbols and Definition
Parameter Description Units ps Average clock period tCK.AVG is calculated as the average clock period within any consecutive 200-cycle window:
Symbol
tCK.AVG
N 1 . tCK.AVG = --- tCK j N j = 1
N = 200
(1)
tJIT.PER
Clock-period jitter
tJIT.PER is defined as the largest deviation of any single tCK from tCK.AVG: tJIT.PER = Min/Max of {tCKi - tCK.AVG} where i = 1 to 200
ps
tJIT(PER, LCK)
Clock-period jitter during DLL-locking period Cycle-to-cycle clock period jitter
period only. tJIT(PER,LCK) is not guaranteed through final production testing. consecutive clock cycles: tJIT.CC = Max of ABS{tCKi+1 - tCKi}
tJIT.PER defines the single-period jitter when the DLL is already locked. tJIT.PER is not guaranteed through final production testing. tJIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps
tJIT.CC
tJIT.CC is defined as the absolute difference in clock period between two
ps
tJIT(CC, LCK)
Cycle-to-cycle clock period jitter during DLL-locking period Cumulative error across 2 cycles
tJIT.CC defines the cycle- to- cycle jitter when the DLL is already locked. tJIT.CC is not guaranteed through final production testing. tJIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking
period only. tJIT(CC,LCK) is not guaranteed through final production testing.
ps
tERR.2PER
tERR.2PER is defined as the cumulative error across 2 consecutive cycles from tCK.AVG:
ps
i + n - 1 tERR ( 2per ) = tCK j - n x tCK ( avg ) j=i
n = 2 for tERR(2per) where i = 1 to 200
(2)
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
59
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Symbol
Parameter Cumulative error across n cycles
Description
Units ps
tERR.nPER
tERR.2PER is defined as the cumulative error across n consecutive cycles from tCK.AVG:
www..com
i + n - 1 tERR ( nper ) = tCK j - n x tCK ( avg ) j=i
where, i = 1 to 200 and n = 3 for tERR.3PER n = 4 for tERR.4PER n = 5 for tERR.5PER 6 n 10 for tERR.6-10PER 11 n 50 for tERR.11-50PER
(3)
tCH.AVG
Average high-pulse width
tCH.AVG is defined as the average high-pulse width, as calculated across any consecutive 200 high pulses:
tCK.AVG
N 1 . tCH ( avg ) = ---------------------------------------- tCH j ( N x tCK ( avg ) ) j = 1
N = 200
(4)
tCL.AVG
Average low-pulse width
tCL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG
consecutive 200 low pulses:
N 1 tCL ( avg ) = --------------------------------------- . tCL j ( N x tCK ( avg ) ) j = 1
N = 200
(5)
tJIT.DUTY
Duty-cycle jitter
tJIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where: tJIT.CH is the largest deviation of any single tCH from tCH.AVG tJIT.CL is the largest deviation of any single tCL from tCL.AVG tJIT.CH = {tCHi - tCH.AVG x tCK.AVG} where i=1 to 200 tJIT.CL = {tCLi - tCL.AVG x tCK.AVG} where i=1 to 200
ps
The following parameters are specified per their average values however, it is understood that the following relationship between the average timing and the absolute instantaneous timing holds all the time.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
60
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 57
Absolute Jitter Value Definitions
Symbol Parameter Clock period Clock high-pulse width Clock low-pulse width Min. Max. Unit ps ps ps
tCK.ABS
www..com tCH.ABS
tCL.ABS
tCK.AVG(Min) + tJIT.PER(Min) tCK.AVG(Max) + tJIT.PER(Max) tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCH.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max) tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max)
Example: for DDR2-667, tCH.ABS.MIN = (0.48 x 3000ps) - 125 ps = 1315 ps = 0.438 x 3000 ps. Table 58 shows clock-jitter specifications.
TABLE 58
Clock-Jitter Specifications for -667 and -800
Symbol Parameter DDR2 -667 Min. Max. 8000 +125 +100 +250 +200 +175 +225 +250 +250 +350 +450 0.52 0.52 +125 DDR2 -800 Min. 2500 -100 -80 -200 -160 -150 -175 -200 -200 -300 -450 0.48 0.48 -100 Max. 8000 +100 +80 +200 +160 +150 +175 +200 +200 +300 +450 0.52 0.52 +100 ps ps ps ps ps ps ps ps ps ps ps Unit
tCK.AVG tJIT.PER tJIT(PER,LCK) tJIT.CC tJIT(CC,LCK) tERR.2PER tERR.3PER tERR.4PER tERR.5PER tERR(6-10PER) tERR(11-50PER) tCH.AVG tCL.AVG tJIT.DUTY
Average clock period nominal w/o jitter Clock-period jitter Clock-period jitter during DLL locking period Cycle-to-cycle clock-period jitter Cycle-to-cycle clock-period jitter during DLLlocking period Cumulative error across 2 cycles Cumulative error across 3 cycles Cumulative error across 4 cycles Cumulative error across 5 cycles Cumulative error across n cycles with n = 6 .. 10, inclusive
3000 -125 -100 -250 -200 -175 -225 -250 -250 -350
Cumulative error across n cycles with n = 11 .. -450 50, inclusive Average high-pulse width Average low-pulse width Duty-cycle jitter 0.48 0.48 -125
tCK.AVG tCK.AVG
ps
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
61
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
7.4
ODT AC Electrical Characteristics
TABLE 59
ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400
This chapter describes the ODT AC electrical characteristics.
www..com Symbol
Parameter / Condition
Values Min. Max. 2
Unit
Note
tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD
ODT turn-on delay ODT turn-on ODT turn-on (Power-Down Modes) ODT turn-off delay ODT turn-off ODT turn-off (Power-Down Modes) ODT to Power Down Mode Entry Latency ODT Power Down Exit Latency
2
tCK
ns ns
1)
tAC.MIN tAC.MIN + 2 ns
2.5
tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns
2.5
tCK
ns ns
2)
tAC.MIN tAC.MIN + 2 ns
3 8
tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns
-- --
tCK tCK
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
TABLE 60
ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800
Symbol Parameter / Condition Values Min. Max. 2 Unit Note
1) 1)2) 1) 1) 1)3) 1) 1) 1)
tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD
ODT turn-on delay ODT turn-on ODT turn-on (Power-Down Modes) ODT turn-off delay ODT turn-off ODT turn-off (Power-Down Modes) ODT to Power Down Mode Entry Latency ODT Power Down Exit Latency
2
nCK
ns ns
tAC.MIN tAC.MIN + 2 ns
2.5
tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns
2.5
nCK
ns ns
tAC.MIN tAC.MIN + 2 ns
3 8
tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns
-- --
nCK nCK
1) New units, "tCK.AVG" and "nCK", are introduced in DDR2-667 and DDR2-800. Unit "tCK.AVG" represents the actual tCK.AVG of the input clock under operation. Unit "nCK" represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, "tCK" is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges.
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
62
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
8
www..com
Package Dimensions
FIGURE 11
Package Outline P(G)-TFBGA-60
This chapter contains the package dimension figures.
Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
63
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 12
Package Outline P(G)-TFBGA-84
www..com
Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
64
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
9
www..com
Product Nomenclature
TABLE 61
Examples for Nomenclature Fields
Field Number 1 2 18 18 3 T T 4 256 256 5 40 16 6 7 0 0 8 A B 9 F F L 10 11 -3 -3.7
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.
Example for
DDR2 SDRAM DDR2 SDRAM
HYB HYI
TABLE 62
DDR2 Memory Components
Field 1 2 3 4 Description Qimonda Component Prefix Interface Voltage [V] DRAM Technology Component Density [Mbit] Values HYB HYI 18 T 256 512 1G 2G 5+6 Number of I/Os 40 80 16 7 8 Product Variations Die Revision 0 .. 9 A(0 ..9) B(0 ..9) C(0 ..9) 9 10 Package, Lead-Free Status Power C F - L Coding Memory components Memory components, industrial temperature range (-40C - +85 C) SSTL_18 DDR2 256 Mbit 512 Mbit 1 Gbit 2 Gbit x4 x8 x16 look up table First Second Third FBGA, lead-containing FBGA, lead-free Standard power product Low power product
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
65
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Field 11
Description Speed Grade
Values -1.9 -25F -2.5 -3 -3S -3.7 -5
Coding DDR2-1066 DDR2-800 5-5-5 DDR2-800 6-6-6 DDR2-667 4-4-4 DDR2-667 5-5-5 DDR2-533 4-4-4 DDR2-400 3-3-3
www..com
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
66
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
List of Figures
Figure 1 Figure 2 Figure 3 www..com Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Chip Configuration for x4 components, PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Configuration for x8 components, PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ball Configuration for x16 components, PG-TFBGA-84 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline P(G)-TFBGA-60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline P(G)-TFBGA-84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 14 18 33 34 38 39 53 53 53 63 64
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
67
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
List of Tables
Table 1 Table 2 Table 3 www..com Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Performance Tables for -25(F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Performance Table for -3(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Performance table for -3.7 4 Performance Table for -5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Ordering Information for Lead-Containing Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ordering Information for Lead-Containing Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chip Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chip Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 DDR2 Addressing for x4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DDR2 Addressing for x8 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DDR2 Addressing for x16 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 24 EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input / Output Capacitance for DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Input / Output Capacitance for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Input / Output Capacitance for DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Input / Output Capacitance for DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Speed Grade Definition Speed Bins for DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Speed Grade Definition Speed Bins for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
68
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Table 50 Table 51 Table 52 Table 53 Table 54 Table 55 Table 56 Table 57 www..com Table 58 Table 59 Table 60 Table 61 Table 62 Speed Grade Definition Speed Bins for DDR2-533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definition Speed Bins for DDR2-400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM Component Timing Parameter by Speed Grade - DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM Component Timing Parameter by Speed Grade - DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM Component Timing Parameter by Speed Grade - DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM Component Timing Parameter by Speed Grade - DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average Clock and Jitter Symbols and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock-Jitter Specifications for -667 and -800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . Examples for Nomenclature Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 45 46 49 54 56 59 61 61 62 62 65 65
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
69
Internet Data Sheet
HY[B/I]18T256[40/80/16]0B[C/F](L) 256-Mbit Double-Data-Rate-Two SDRAM
Table of Contents
www..com
1 1.1 1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Configuration for PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Configuration for P(G)-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256-Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 15 19
2 2.1 2.2 2.3 3 4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Definition and Clock Jitter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30 31 32 34 36 38 43 43 46 59 62
5 5.1 5.2 5.3 5.4 5.5 5.6 6 7 7.1 7.2 7.3 7.4 8 9
Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Rev. 1.11, 2007-07 11172006-LBIU-F1TN
70
Internet Data Sheet
www..com
Edition 2007-07 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 Munchen, Germany (c) Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com


▲Up To Search▲   

 
Price & Availability of HYI18T256160B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X